(REBE)

JavaScﬁﬁt"
ell.

in a Nuts

Everything as short as possible

~ By Harshad & Gulraiz.

Index.

Topics Page
Why you should learn JS? Ol
Let,Const Var. 06
Operators. 06

Data Types. 06
Strings. 06
Events 06
Event Listener/Event Handler
Functions. 08
Objects. 08
Arrays.
Getter.
Seter.
for loop.

for...in.

Topics
while loop.
do while.
Type Conversion.
Callbacks.
Promises.
Async, Await.
Closuers.
Timers.
Prototyping.
Generators.
Unicode.
Inheritance.

Regular Expression (RegEx)

Why you should
Learn JavaScript?

It Works in The Browser

Like most languages, you don't need to setup
anything. You can run your code without any
Environment.

Easy to Learn

A very beginner friendly language in which you
don't need to learn deal with complexities.

Versatile Programming Language

From front-end to back-end, JavaScript can be used
for almost anything. There's nothing you can't do with
J5,

Big Community Support

Doesn't matter what error you face while learning.
Just google it, and you'll see tons of solution.

Let, Const, Var

Let

The let statement declares a block-scoped
local variable, optionally initializing it to a value.

var
The var statement declares a function-scoped or globally-
scoped variable, optionally initializing it to a value.

const

Constants are block-scoped, much like variable is declared
using the let keyword. The value of a constant can't be
changed through reassignment, and it can't be redeclared.

Cheatsheet. &

Function vs Block-Scope

Redefinable

function-scope

block-scope

block-scope

Operations

Definition
In JavaScript, an operator is a special symbol used to perform
operations on operands (values and variables).

2+ 3; 1T S

+ is an operator that performs addition, and 2 and 3 are
operands.

JavasScript Operator Types
« Assignment Operators.

« Arithmetic Operators.

» Comparison Operators.

* Logical Operators.

* Bitwise Operators.

» String Operators.

« Other Operators.

Data Types

Data types can be confusing sometimes. Let's make it clear
because its super important.

Definition

= 5;
"Hello™;

» 5is an integer data.
» "Hello" is a string data

represents textual data

‘hello world!'’

Number

an integer or a
floating-point number

an integer with arbitrary
precision

900719925124 74529990

Boolean

Any of two values:
true or false

a data type whose
variable is not initialized

denotes a null value

data type whose
instances are unique
and immutable

key-value pairs of
collection of data

Strings
JavaScript String

JavasScript string is a primitive data type that is used to
work with texts. For example,

const name = '"John";

Creating JavaScript String.

Strings are created by surrounding them with quotes.
Here's how we do it:

single quotes: Hello
Double quotes: "Hello”
Backticks: ‘Hello’

B Single & Double quotes are practically the same. Use
Either of them.

B We use backticks when we need to include variables or
expression in a string.

Events

JavaScript Events

The change in the state of an object is known as an
Event. This process of reacting over the events is called
Event Handling. Thus, JS handles the HTML events

via Event Handlers.

onclick — The event occurs when the user clicks on
an element.

oncontextmenu — User right-clicks on an element
to open a context menu.

ondblclick — The user double-clicks on an element.
onmousedown — User presses a mouse button
over an element.

onmouseenter — The pointer moves onto an element.
onmouseleave — Pointer moves out of an element.
onmousemove — The pointer is moving while it is
over an element.

Event Listener/
Event Handler

There are two ways you can handle an
eventin JS.

« Event Listeners.

» Event Handlers.

Event Handlers

« To use event handlers, use one of the EventHandler
properties of an object.

* Here's an example of using one onmouseover.

const buttolr

document.querySelector(".button®)

button.onmouseover = () = {
console.log("Button onmouseover"®)

}

« onmouseover - triggers when the mouse pointer
is moved onto the button.

Event Listener
« An event listener is something you assign to an object.

+ As the name suggests, the event listener listens for
events and gets triggered when an event occurs.

const button

document.querySelector(".button®)

button.addEventListener("mouseover". ()
console.log("Button mouseover.")

})

* mouseover - Hovering on the button triggers a
"mouseover” event, then it runs the block of code.

Functions

JavaScript Functions

JavaScript provides functions similar to most of the
scripting and programming languages. In JavaScript,

a function allows you to define a block of code, give it

a name and then execute it as many times as you want.

Example

function ShowMessage()

alert{ "Hello world!");

JavaScript Objects
JavaScript object is a non-primitive data-type that
allows you to store multiple collections of data.

student
firstName: 'ram’,
class: 10

Here, student is an object that stores values such as
strings and numbers.

JavaScript Object Declaration

const object_name =
keyl: valuel,
key2: value2

Here, an object object_name is defined. Each member
of an object is a key: value pair separated by commas
and enclosed in curly braces {}.

Arrays

JavaScript Arrays.

An array is an object that can store multiple elements.
For example,

["hello", '"world®, "welcome'];

Array Example.

const myList = [];
const numberArray
const stringArray 'eat', 'work', 'sleep'];

const newData = ['work', 'exercise', 1, true];

getter

what is getter -
we use getter to access the properties.

In this case, we have firstName & lastName, but what if
we want to access full name. Here's how we will do it.

const person = {
firstName = 'Gulraiz',
lastName = 'Khan',
fullName () {
return “${person.firstName}
${person.lastName}"

}

in fullName(), we're using a template literal.

Output -

console.log(person. fullName);

setter

what is setter -
we use setter to change (mutate) the property.

o0®

const student

firstName: ‘Monica’,
set changeName{newhame) {
this.firstName newName ;
console.log{ student.firstName);

student.changeName ‘Sarah’;
console.leg(student.firstName);

In the above example, the setter method is used to change
the value of an object.

set changeName(newName) {
this.firstName = newName:

}

To create a setter method, the set keyword is used.

for loop

For Loop
Loops are used to repeat a block of code.

Example

If you want to show something 1000 times, you can use

a loop.

Syntax

[—O initializes and/or declares variables and executes only once

for loop body

/
L

for ;initiulExpression; condition; updateExpression) {

"

Condition runs: OJ

1- If condition is false, loop terminated.
2= If condition is true, code block executes.

updateExpression updates the value of initialExpression

when the condition is true.

Example -

const n = 5;

for (let 1 = 1; 1 € n; i+) {
console.log(I am a programmer.’);

}

Output -

L N N

[am a programmer.
I am a& programmer.
I am & programmer.

mmer .

am a programmer.

for...in

Syntax

200

In each iteration of the loop, a key is assigned to the key
variable. The loop continues for all object properties.

Once you get keys, you can easily find their
corresponding values.

Example - Output -

e name => Monica
anst student = class =>7
sl il age =>12

age: 17

Code Explanation -

In the above program, the for...in loop is used to iterate
over the student object and print all its properties.

1- The object key is assigned to the variable key.
2- student[key] is used to access the value of key.

while loop

While Loop

The while loop loops through a block of code as long
as a specified condition is true.

Syntax

Example -

the code in the loop will run, over and over again, as
long as a variable (i) is less than 10:

g
299

while (1 < 18) '[

= "The number is "

1
t

do while loop

Do while statement creates a loop that executes a
specified statement until the test condition evaluates
to false.

Syntax

do 1

} while(condition)

How it works -

>> The body of loop is executed.

>> If the condition is true, the body of the loop inside the
do statement is executed again.

>> The condition is evaluated again.

>> If the condition evaluates to true, the body inside do is
executed again.

>> The process continues until the condition evaluates to

false. Then the loop stops.

do...while loop is similar to the while loop. The only
difference is that in do..while loop, the body of loop
is executed at least once.

Type Conversion

Break Statement

Type conversion is the process of converting data of
one type to another.

Example -
Converting String data to Number.

Types

>> Implicit Conversion - automatic type conversion
>> Explicit Conversion - manual type conversion

|| implicit Conversion

In certain situations, JavaScript automatically converts
one data type to another (to the right type).

Example

o0 9

result 3
console.log(result)

result '3' + true;

console.log(result);

|| Explicit Conversion

The type conversion that you do manually is known as
explicit type conversion.

Example

result Number("324"°):
console.log(result);

result Number("324e-1")
CONS '_"'.1.Dg' result "|;

Callbacks

A function is a block of code that performs a certain
task when called.

In above program, a string value is passed as an
argument to the greet() function.

In JavaScript, you can also pass a function as an
argument to a function. This function that is passed
as an argument inside of another function is called a
callback function.

Output

Hi Peter

am callback function

console.log('I am callback function');

Promises

Promises is a good way to handle asynchronous
operations. It is used to find out if the asynchronous
operation is successfully completed or not.

States -

A promise may have one of three states.
>> Pending.

>> Fulfilled.

>> Rejected.

A promise start with pending state means the process
is not complete. If the operation is successful, the
process ends in a fulfilled state. If error occurs, the
process ends in a rejected state.

Create a promise -

Example

0@

const count true;
t countValue new Promise(function (resolve,
if (count) {
resolve("There is a count value.");
} else {
reject("There 15 no count value");

;

console.log(countValue);

Output

i

Promise {<resolved>: "There 1s a count value."}

In the above program, a Promise object is created

that takes two functions: resolve() and reject8. resolve()

is used if the process is successful and reject() is used

when an error occurs in the promise.

The promise is resolved if the value of count is true.

Async,Await

‘async and await make promises easier to write”
async makes a function return a Promise.
await makes a function wait for a Promise.

d5ync

Here,

>»> name - name of the function

>»> parameters - parameters that are passed to the
function

Example Output
see | async function.

onsole.logl 'async functiom.');
rromise. resolvel1);

The await keyword is used inside the async
function to wait for the asynchronous operation.

Example

wait for
promise
to
complete

1 "|"-LDE:' w1t
onsole.logl 'hello’);

calling
function

Note: You can use await only inside of async functions.

Closures

Before you understand closure, quickly understand
these two concepits.

>> Nested Function
>> Returning a function

Nested Function
a function can also contain another function.

Returning a function
you can also return a function within a function.

i T I
I n greet{name) 1q

function displayName() {

Timers

setTimeout()

The setTimeout() method executes a block of code
after the specified time. The method executes the
code only once.

The commonly used syntax of JavaScript setTimeout is:

setTimeout(function, milliseconds);

a function the time after
containing which the function
a block of code is executed

Example

function greet() {
console.log('Hello world');
}
setTimeout(greet, 3000);
console.log('This message 1s shown first');

- -

In the above program, the setTimeout() method callls
the greet() function after 3000 milliseconds (3 second).

Prototyping

JavaScript Prototype

In JavaScript, every function and object has a property
named prototype by default.

Example

(o W
function Person () {
this.name = 'John',

this.age = 23
}

const person = new Person();

console.log(Person.prototype);

L=

We are trying to access the prototype property of a
Person constructor function.

Since the prototype property has no value at the
moment, it shows an empty object { ... }.

Prototype Inheritance

A prototype can be used to add properties and methods
to a constructor function.

Example

function Person () {
this.name = 'John',
this.age = 23

const personl = new Person();
const person2 = new Person();

Person.prototype.gender = 'male’;
console.log(Person.prototype);

console.log(personl.gender);
console.log(person2.gender);

Generators

JavaScript Generators

In JavasScript, generators provide a new way to
work with functions and iterators.

Using a generator,

>»> you can stop the execution of a function from anywhere
inside the function
»> and continue executing code from a halted position

function* generator_function() {

}

const generator_obj = generator_function();

Note: The generator function is denoted by *. You can
either use function* generatorFunc() {...} or
function *generatorFunc(){...} to create them.

Using yield to Pause Execution

You can pause the execution of a generator function
without executing the whole function body. Use yield'
keyword.

~

nction* generatorfFunc() {
console.log("1. code before the first yield");
yield 100;

console.log("2. code before the second yield");

yield 200:

const generator = generatorrunce j);

cons ."l:.l.ﬂg' generator.nextl

Here,

»> Generate object named "generator” is created.

»> When "generator.next()" is called, the code up to the
yield is executed. When "yield" is encountered. When yield
is encountered, the program returns the value and
pauses the generator function.

Note: You need to assign generator objects to a variable
before you use it.

Unicode

JavasScript Unicode

The Unicode Standard provides a unique number for
every character, no matter the platform, device,
application, or language.

UTF-8 is a popular Unicode encoding which has 8-bit
code units.

How to insert Unicode

»> Unicode in JavaScript source code.
>»> Unicode in JavaScript strings.
Example

1. Unicode in JavasScript source code.

The identifiers and string literals can be expressed in
Unicode via a Unicode escape sequence.

Example -

The letter o is denoted as *\uOO6F’ in Unicode. Hence,
let's have a look at foo'.

var f\ueeeF\ud@eF = 'abc':
console.log(foo)

abc

Unicode in JavaScript strings.

Unicode can also be represented in a JavaScript string
using the \uXXXX syntax.

var str = '\uD83D\uDC04';
console.log(str)

™

Inheritance

Inheritance enables you to define a class that takes all
the functionality from a parent class and allows you to
add more.

Inheritance is a useful feature that allows code reusability.

Example

coe | In the above example, the
Student class inherits all the
b R methods and properties of
this.name = name; the Person class. Hence, the
e Student class will now have
ke M A et the name property and the
greet() method.

Then, we accessed the greet()
method of Student class
by creating a studentl object.

tudentl.greet();

RegEX

Regular Expression (RegEx)

A Regular Expression (RegEx) is an object that describes
a sequence of characters used for defining a search
pattern.

/*a...s%/

The above code defines a RegEx pattern. The pattern is:
any five letter string starting with a and ending with s.

.
Expression String Matched?

abs No match
alias Match
abyss Match
Alias No match

An abacus No match

Create a RegEx
Two ways to create RegEx in JS.

1. Using a regular expression literal.

The regular expression consists of a pattern enclosed
between slashes /.

cost regularExp Jabc/:

2. Using the RegExp() constructor function

You can also create a regular expression by calling the
RegExp() constructor function.

o0

;t reguarexg new RegExp("abc');

@gulraizcodes | @codewithharshad

Thank you for your humble support.
Its a free e-book for you so you

start your journey as a JS Developer.
Every topic is as short as possible.
I'm sure not each and every topic is
covered but these were the most
important topics. We'll be making

a detailed version of JavaScript
e-book where we will cover every JS
Topic. Thank you, once again.

~ By Harshad & Gulraiz.

